Авторы: Любченко Л. Н., Филиппова М. Г., Мехтиева Н. И.
DOI: 10.17650/2618-7019-2019-2-1-2-10-21
PDF: https://journal.oncopathology.ru/article/OP_1_2_19-12-23.pdf
Тамоксифен является препаратом выбора при эндокринотерапии гормоноположительного рака молочной железы у женщин. Метаболическая активность тамоксифена в организме определяется активностью фермента CYP2D6, кодируемого одноименным геном: под действием фермента тамоксифен переходит в метаболически активную форму – эндоксифен. Фармакогенетическое тестирование гена CYP2D6 у пациенток с гормоноположительным раком молочной железы поможет прогнозировать эффективность терапии и оценить риск развития побочных эффектов с целью улучшения отдаленных результатов лечения.
Любченко Л. Н., Филиппова М. Г., Мехтиева Н. И.
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России; Россия, 115478 Москва, Каширское шоссе, 24
1. Статистика злокачественных новообразований в России и странах СНГ в 2012 г. Под ред. М.И. Давыдова, Е.М. Аксель. М.: Издательская группа РОНЦ, 2014. 226 с. [Statistics of malignant tumors in Russia and CIS countries in 2012. Ed. by M.I. Davydov, E.M. Aksel. Moscow: Publishing group of the N.N. Blokhin Russian Cancer Research Center, 2014. 226 p. (In Russ.)].
2. Goldhirsch A., Wood W.C., Gelber R.D. et al. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer. Ann Oncol 2007;18(7):1133–44. DOI: 10.1093/annonc/mdm271.
3. Davies C., Pan H., Godwin J. et al. Longterm effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomized trial. Lancet 2013;381(9869):805–16. DOI: 10.1016/S0140-6736(12)61963-1.
4. Gray R.G., Rea D., Handley K. et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years in 6,953 women with early breast cancer. J Clin Oncol 2013;31(18S):5.
5. Lim Y.C., Desta Z., Flockhart D.A., Skaar T.C. Endoxifen (4-hydroxy-N-desmethyltamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxytamoxifen. Cancer Chemother Pharmacol 2005;55(5):471–8. DOI: 10.1007/s00280-004-0926-7.
6. Crewe H.K., Ellis S.W., Lennard M.S., Tucker G.T. Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem Pharmacol 1997;53(2):171–8.
7. Murdter T.E., Schroth W., Bacchus-Gerybadze L. et al. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther 2011;89(5):708–17. DOI: 10.1038/ clpt.2011.27.
8. Wu X., Hawse J.R., Subramaniam M. et al. The tamoxifen metabolite, endoxifen, is a potent antiestrogen that targets estrogen receptor alpha for degradation in breast cancer cells. Cancer Res 2009;69(5):1722–7. DOI: 10.1158/0008- 5472.CAN-08-3933.
9. De Vries Schultink A.H., Zwart W., Linn S.C. et al. Effects of pharmacogenetics on the pharmacokinetics and pharmacodynamics of tamoxifen. Clin Pharmacokinet 2015;54(8):797–810. DOI: 10.1007/ s40262-015-0273-3.
10. Mwinyi J., Vokinger K., Jetter A. et al. Impact of variable CYP genotypes on breast cancer relapse in patients undergoing adjuvant tamoxifen therapy. Cancer Chemother Pharmacol 2014;73(6): 1181–8. DOI: 10.1007/s00280-014-2453-5.
11. Gonzalez F.J., Mackenzie P.I., Kimura S., Nebert D.W. Isolation and characterization of mouse full-length cDNA and genomic clones of 3-methylcholanthreneinducible cytochrome P1-450 and P3-450. Gene 1984;29(3):281–92. DOI: 10.1016/0378-1119(84)90057-X.
12. Nebert D.W., Adesnik M., Coon M.J. et al. The P450 gene superfamily: recommended nomenclature. DNA 1987;6(1): 1–11. DOI: 10.1089/dna.1987.6.1.
13. Nelson D.R. Cytochrome P450 gene superfamily. Avaliable at: http://www.drnelson. utmem.edu/cytochromeP450.html.
14. Phillips K.A., Veenstra D.L., Oren E. et al. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 2001;286(18):2270–9.
15. Andersson T., Flockhart D.A., Goldstein D.B. et al. Drug-metabolizing enzymes: evidence for clinical utility of pharmacogenomic tests. Clin Pharmacol Ther 2005;78(6):559–81. DOI: 10.1016/j. clpt.2005.08.013.
16. Franceschi M., Scarcelli C., Niro V. et al. Prevalence, clinical features and avoidability of adverse drug reactions as cause of admission to a geriatric unit: a prospective study of 1756 patients. Drug Saf 2008;31(6):545–56. DOI: 10.2165/00002018-200831060-00009.
17. Lazarou J., Pomeranz B.H., Corey P.N. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998;279(15):1200–5.
18. Bradford L.D. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2001;3(2):229–43. DOI: 10.1023/B:BREA.0000025406.31193.e8.
19. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics 2005;5(1):6–13. DOI: 10.1038/sj.tpj.6500285.
20. Zanger U.M., Raimundo S., Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 2004;369(1):23–37. DOI: 10.1007/s00210-003-0832-2.
21. Goetz M.P., Rae J.M., Suman V.J. et al. Pharmacogenetics of tamoxifen biotrans formation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 2005;23(36):9312–8. DOI: 10.1200/JCO.2005.03.3266.
22. Human cytochrome P450 (CYP) allele nomenclature T. The Human Cytochrome P450 (CYP) Allele Nomenclature Database. Available at: http://www.cypalleles. ki.se/cyp2d6.htm.
23. Arvanitidis K., Ragia G., Iordanidou M. et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol 2003;59(4):303–12. DOI: 10.1111/j.1472-8206.2007.00510.x.
24. McGraw J., Waller D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol 2012;8(3):371–82. DOI: 10.1517/17425255.2012.657626.
25. Eichelbaum M., Ingelman-Sundberg M., Evans W.E. Pharmacogenomics and individualized drug therapy. Annu Rev Med 2006;57:119–37. DOI: 10.1146/annurev. med.56.082103.104724.
26. Evans W.E., Relling M.V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999;286(5439):487–91.
27. Nebert D.W., Jorge-Nebert L.F. Pharmacogenetics and pharmacogenomics. In book: Emery and rimoin’s principles and practice of medical genetics. 4th edn. Eds.: D.L. Rimoin, J.M. Connor, R.E. Pyeritz, B.R. Korf. Edinburgh: Harcourt Brace, 2002. Pp. 590–631.
28. Crewe H.K., Notley L.M., Wunsch R.M. et al. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 40-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metabolism Dispos 2002;30(8): 869–74. DOI: 10.1124/dmd.30.8.869.
29. Desta Z., Ward B.A., Soukhova N.V., Flockhart D.A. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004;310(3):1062–75. DOI: 10.1124/ jpet.104.065607.
30. Maximov P.Y., McDaniel R.E., Fernandes D.J. et al. Simulation with cells in vitro of tamoxifen treatment in premenopausal breast cancer patients with different CYP2D6 genotypes. Br J Pharmacol 2014;171(24):5624–35. DOI: 10.1111/bph.12864.
31. Johnson M.D., Zuo H., Lee K.H. et al. Pharmacological characterization of 4-hydroxy- N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 2004;85(2):151–9.
32. Кольман Я., Рём К.Г. Наглядная биохимия. М.: Мир, 2000. 470 c. [Kolman Ya., Ryom K.G. Visual biochemistry. Moscow: Mir, 2000. 470 p. (In Russ.)].
33. Сычев Д.А., Миронова Н.А. Фармакогенетическое тестирование по CYP2D6 и CYP2C19: значение для персонализации применения лекарственных средств в клинической практике. Лаборатория 2012;(4):11–3. [Sychev D.A., Mironova N.A. Pharmacogenetic testing for CYP2D6 and CYP2C19: role for personalized treatment in clinical practice. Laboratoriya = Laboratory 2012;(4):11–3. (In Russ.)].
34. Zhou S.F. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin Pharmacokinet 2009;48(12):761–804. DOI: 10.2165/11318030-000000000-00000.
35. Borges S., Desta Z., Li L. et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol 2006;80(1):61–74. DOI: 10.1016/j. clpt.2006.03.013.
36. Lim H.S., Ju Lee H., Seok Lee K. et al. Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J Clin Oncol 2007;25(25):3837–45. DOI: 10.1200/JCO.2007.11.4850.
37. Madlensky L., Natarajan L., Tchu S. et al. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 2011;89(5):718–25. DOI: 10.1038/ clpt.2011.32.
38. Schroth W., Goetz M.P., Hamann U. et al. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 2009;302(13):1429–36. DOI: 10.1001/jama.2009.1420.
39. Regan M.M., Leyland-Jones B., Bouzyk M. et al. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the Breast International Group 1-98 trial. J Natl Cancer Inst 2012;104(6):441–51. DOI: 10.1093/jnci/djs125.
40. Rae J.M., Drury S., Hayes D.F. et al. CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst 2012;104(6):452–60. DOI: 10.1093/jnci/ djs126.
41. Nakamura Y., Ratain M.J., Cox N.J. et al. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the Breast International Group 1-98 trial. J Natl Cancer Inst 2012;104(16):1264. DOI: 10.1093/jnci/djs304.
42. Dezentjé V.O., van Schaik R.H., Vletter- Bogaartz J.M. et al. CYP2D6 genotype in relation to tamoxifen efficacy in a Dutch cohort of the tamoxifen exemestane adjuvantmultinational (TEAM) trial. Breast Cancer Res Treat 2013;140(2): 363–73. DOI: 10.1007/s10549-013-2619-6.
43. Goetz M.P., Suman V.J., Hoskin T.L. et al. CYP2D6 metabolism and patient outcome in the Austrian Breast and Colorectal Cancer Study Group trial (ABCSG) 8. Clin Cancer Res 2013;19(2):500–7. DOI: 10.1158/1078-0432.CCR-12-2153.
44. Karle J., Bolbrinker J., Vogl S. et al. Influence of CYP2D6-genotype on tamoxifen efficacy in advanced breast cancer. Breast Cancer Res Treat 2013;139(2):553–60. DOI: 10.1007/s10549-013-2565-3.
45. Zeng Z., Liu Y., Liu Z. et al. CYP2D6 polymorphisms influence tamoxifen treatment outcomes in breast cancer patients: a meta-analysis. Cancer Chemother Pharmacol 2013;72(2):287–303. DOI: 10.1007/s00280-013-2195-9.
46. Irvin W.J.Jr., Walko C.M., Weck K.E. et al. Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol 2011;29(24):3232–9. DOI: 10.1200/ JCO.2010.31.4427.
47. Kiyotani K., Mushiroda T., Imamura C.K. et al. Dose-adjustment study of tamoxifen based on CYP2D6 genotypes in Japanese breast cancer patients. Breast Cancer Res Treat 2012;131(1):137–45. DOI: 10.1007/ s10549-011-1777-7.
48. Rolla R., Vidali M., Meola S. et al. Side effects associated with ultrarapid cytochrome P450 2D6 genotype among women with early stage breast cancer treated with tamoxifen. Clin Lab 2012;58(11–12): 1211–8.
49. Barginear M.F., Jaremko M., Peter I. et al. Increasing tamoxifen dose in breast cancer patients based on CYP2D6 genotypes and endoxifen levels: effect on active metabolite isomers and the antiestrogenic activity score. Clin Pharmacol Ther 2011;90(4):605–11. DOI: 10.1038/ clpt.2011.153.
50. Brauch H., Schroth W., Goetz M.P. et al. Tamoxifen use in postmenopausal breast cancer: CYP2D6 matters. J Clin Oncol 2013;31(2):176–80. DOI: 10.1200/ JCO.2012.44.6625.
51. Stingl J.C., Parmar S., Huber-Wechselberger A. et al. Impact of CYP2D6*4 genotype on progression free survival in tamoxifen breast cancer treatment. Curr Med Res Opin 2010;26(11):2535–42. DOI: 10.1185/03007995.2010.518304.
52. Bijl M.J., van Schaik R.H., Lammers L.A. et al. The CYP2D6*4 polymorphism affects breast cancer survival in tamoxifen users. Breast Cancer Res Treat 2009;118(1):125–30. DOI: 10.1007/ s10549-008-0272-2.
53. Schroth W., Antoniadou L., Fritz P. et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 2007;25(33):5187–93. DOI: 10.1200/JCO.2007.12.2705.
54. Martins D.M., Vidal F.C., Souza R.D. et al. Determination of CYP2D6*3, *4, and *10 frequency in women with breast cancer in São Luís, Brazil, and its association with prognostic factors and disease free survival. Braz J Med Biol Res 2014;47(11):1008–15.
55. Nowell S.A., Ahn J., Rae J.M. et al. Association of genetic variation in tamoxifen- metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat 2005;91(3):249–58. DOI: 10.1007/ s10549-004-7751-x.
56. Wegman P., Elingarami S., Carstensen J. et al. Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res 2007;9(1):7. DOI: 10.1186/bcr1640.
57. Fann J.R., Thomas-Rich A.M., Katon W.J. et al. Major depression after breast cancer: a review of epidemiology and treatment. Gen Hosp Psychiatry 2008;30(2):112–26. DOI: 10.1016/j.genhosppsych. 2007.10.008. 58. Jeppesen U., Gram L.F., Vistisen K. et al. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 1996;51(1):73–8.
59. Binkhorst L., Bannink M., de Bruijn P. et al. Augmentation of endoxifen exposure in tamoxifen-treated women following SSRI switch. Clin Pharmacokinet 2016;55(2):249–55. DOI: 10.1007/ s40262-015-0315-x.
60. Borges S., Desta Z., Jin Y. et al. Composite functional genetic and comedication CYP2D6 activity score in predicting tamoxifen drug exposure among breast cancer patients. J Clin Pharmacol 2010;50(4):450–8. DOI: 10.1177/0091270009359182.
61. Jin Y., Desta Z., Stearns V. et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 2005;97(1):30–9. DOI: 10.1093/jnci/ dji005.
62. Stearns V., Johnson M.D., Rae J.M. et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 2003;95(23):1758–64.
63. Chubak J., Buist D.S., Boudreau D.M. et al. Breast cancer recurrence risk in relation to antidepressant use after diagnosis. Breast Cancer Res Treat 2008;112(1): 123–32. DOI: 10.1007/s10549-007-9828-9.
64. Lehmann D., Nelsen J., Ramanath V. et al. Lack of attenuation in the antitumor effect of tamoxifen by chronic CYP isoform inhibition. J Clin Pharmacol 2004;44(8):861–5. DOI: 10.1177/0091270004266618.
65. Swen J.J., Nijenhuis M., de Boer A. et al. Pharmacogenetics: from bench to byte – an update of guidelines. Clin Pharmacol Ther 2011;89(5):662–73. DOI: 10.1038/ clpt.2011.34.
66. Tamoxifen background summary draft. Available at: http://www.fda.gov/ohrms/ dockets/ac/06/briefing/2006-4248b1- 01-fda-tamoxifen-background-summaryfinal. pdf.
Авторы заявляют об отсутствии конфликта интересов.
Работа выполнена без спонсорской поддержки.
Любченко Л. Н., Филиппова М. Г., Мехтиева Н. И. Фармакогенетическое тестирование для индивидуализации гормонотерапии тамоксифеном. Онкопатология 2019;2(1–2):10–21.
|
2024 №3 (Том 7) Скачать>> |