Федосеева Е. С., Василева О. Л., Воробьев С.Л., Козорезова Е. С., Фурминская Е. Ю., Прилучный С. В., Василев Я. В., Гриневич В. Н.
DOI: https://doi.org/10.17650/2618-7019-2024-7-1-37-51
PDF: https://journal.oncopathology.ru/article/op_2024_1-37-51.pdf
В обзоре представлены возможности современной цитопатологической диагностики выпотных жидкостей, включая иммуноцитохимию и иммуногистохимию, молекулярную генетику и цитогенетику. Отражены возможности и особенности работы с разными вариантами клеточных блоков, полученных из цитологического материала.
Е.С. Федосеева 1, О.Л. Василева2, С.Л. Воробьев2, Е.С. Козорезова2, Е.Ю. Фурминская3, С.В. Прилучный3, Я.В. Василев4, В.Н. Гриневич1, 5.
1 Медицинский радиологический научный центр им. А.Ф. Цыба – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России; Россия, 249036 Обнинск, ул. Королева, 4;
2 ООО «Национальный центр клинической морфологической диагностики»; Россия, 192071 Санкт-Петербург, проспект Славы, 32;
3 ФГБУ «Центральная клиническая больница с поликлиникой» Управления делами Президента Российской Федерации; Россия, 121359 Москва, ул. Маршала Тимошенко, 15;
4 ФГБУ «Северо-Западный окружной научно-клинический центр им. Л.Г. Соколова» ФМБА России; Россия, 194291 СанктПетербург, проспект Культуры, 4;
5 Московский научно-исследовательский онкологический институт им. П.А. Герцена – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России; Россия, 125284 Москва, 2-й Боткинский проезд, 3
1. Rekhtman N., Roy-Chowdhuri S. Cytology specimens: a goldmine for molecular testing. Arch Pathol Lab Med 2016;140(11):1189–90. DOI: https://doi.org/10.5858/arpa.2016-0379-ED
2. da Cunha Santos G., Saieg M.A. Preanalytical specimen triage: smears, cell blocks, cytospin preparations, transplant media and cytobanking. Cancer Cytopathol 2017;125(S6):455–64. DOI: https://doi.org/10.1002/cncy.21850
3. Nambirajan A., Jain D. Cell blocks in cytopathology: an update. Cytopathology 2018;29(6):505–24. DOI: https://doi.org/10.1111/cyt.12627
4. Engels M., Michael C., Dobra K. et al. Management of cytological material, pre-analytical procedures and bio-banking in effusion cytopathology. Cytopathology 2019;30(1):31–8. DOI: https://doi.org/10.1111/cyt.12654
5. Савостикова М.В., Федосеева Е.С., Фурминская Е.Ю., Горбань Н.А. Клеточные блоки на основе желатина: опыт применения в цитологической лаборатории. Онкопатология 2021;4(1–2):10–7. [Savostikova M.V., Fedoseeva E.S., Furminskaya E.Yu., Gorban N.A. Gelatin cell blocks: experience of use in a cytology laboratory. Onkopatologiya = Oncopathology 2021;4(1–2):10–7. (In Russ.)]. DOI: https://doi.org/10.17650/2618-7019-2021-4-1-2-10-17
6. Сметанина С.В., Славнова Е.Н. Возможности цитологической диагностики карцином печени. Онкология. Журнал им. П.А. Герцена 2020;9(2):68–73. [Smetanina SV, Slavnova EN. Possibilities of cytological diagnosis of liver carcinomas. P.A. Herzen Journal of Oncology 2020;9(2):68–73. (In Russ.)]. DOI: https://doi.org/10.17116/onkolog2020902168
7. Волченко Н.Н., Борисова О.В., Баранова И.Б. Технология «клеточный блок» в цитологической практике. Клиническая лабораторная диагностика 2015;60(8):37–39. [Volchenko N.N., Borisova O.V., Baranova I.B. The technology “cell block” in cytological practice. Klinicheskaya Laboratornaya Diagnostika. 2015;60(8):37–39. (In Russ.)].
8. Balassanian R., Woo G.D., Olejnik-Nave J. et al. A superior method for cell block preparation for fine-needle aspiration biopsies. Cancer Cytopathol 2016;124:508–18. DOI: https://doi.org/10.1002/cncy.21722 9. Kerstens H.M., Robben J.C., Poddighe P.J. et al. AgarCyto: a novel cell-processing method for multiple molecular diagnostic analyses of the uterine cervix. J Histochem Cytochem 2000;48(5):709–18. DOI: https://doi.org/10.1177/002215540004800515
10. Khan S., Omar T., Michelow P. Effectiveness of the cell block technique in diagnostic cytopathology. J Cytol 2012;29(3):177–182. DOI: https://doi.org/10.4103/0970-9371.101167
11. Benkovich V., Cuda J., Khalbuss W. et al. Comparison of Cell Block Preparation Using HistoGel and Plasma Thrombin Techniques 2012;1(1):S114–15. DOI: https://doi.org/10.1016/j.jasc.2012.08.249
12. Rekhtman N., Buonocore D.J., Rudomina D. et al. Novel Modification of HistoGel-Based Cell Block Preparation Method: Improved Sufficiency for Molecular Studies. Arch Pathol Lab Med 2018;142(4):529–35. DOI: https://doi.org/10.5858/arpa.2017-0030-OA
13. van Hemel B.M., Suurmeijer A.J. Effective application of the methanol-based PreservCyt™ fixative and the Cellient™ automated cell block processor to diagnostic cytopathology, immunocytochemistry, and molecular biology. Diagn Cytopathol 2013;41(8):734–41. DOI: https://doi.org/10.1002/dc.22963
14. Kruger A.M., Stevens M.W., Kerley K.J., Carter CD. Comparison of the Cellient(™) automated cell block system and agar cell block method. Cytopathology 2014;25(6):381–88. DOI: https://doi.org/10.1111/cyt.12216
15. Xing W., Hou A.Y., Fischer A. et al. The Cellient automated cell blo ck system is useful in the differential diagnosis of atypical glandular cells in Papanicolaou tests. Cancer Cytopathol 2014;122(1):8–14. DOI: https://doi.org/10.1002/cncy.21343.
16. Michael C.W., Davidson B. Pre-analytical issues in effusion cytology. Pleura Peritoneum 2016;1(1):45–56. DOI: https://doi.org/10.1515/pp-2016-0001
17. Desai K.M., Angadi P.V., Kale A.D., Hallikerimath S. Modified Alcohol-Formalin Cell Block Technique in Head and Neck Pathology Diagnosis. Acta Cytologica 2018;62:39–43. DOI: https://doi.org/10.1159/000484195
18. Jain D., Nambirajan A., Borczuk A. et al. Immunocytochemistry for predictive biomarker testing in lung cancer cytology. Cancer Cytopathol 2019;127(5):325–39. DOI: https://doi.org/10.1002/cncy.22137
19. Wang G., Ionescu D.N., Lee C.H. et al. PD-L1 testing on the EBUS-FNA cytology specimens of non-small cell lung cancer. Lung Cancer 2019;136:1–5. DOI: https://doi.org/10.1016/j.lungcan.2019.07.033
20. Torous V.F., Rangachari D., Gallant B.P. et al. PD-L1 testing using the clone 22C3 pharmDx kit for selection of patients with nonsmall cell lung cancer to receive immune checkpoint inhibitor therapy: are cytology cell blocks a viable option? J Am Soc Cytopathol 2018;7(3):133–41. DOI: https://doi.org/10.1016/j.jasc.2018.02.003
21. Heymann J.J., Bulman W.A., Swinarski D. et al. PD-L1 expression in non-small cell lung carcinoma: comparison among cytology, small biopsy, and surgical resection specimens. Cancer Cytopathol 2017;125(12):896–907. DOI: https://doi.org/10.1002/cncy.21937
22. Prince S.S., Bubendorf L. Predictive potential and need for standardization of PD-L1 immunohistochemistry. Virchows Arch 2019; 474(4):475–84. DOI: https://doi.org/10.1007/s00428-018-2445-7
23. Munari E., Zamboni G., Sighele G. et al. Expression of programmed cell death ligand 1 in non-small cell lung cancer: comparison between cytologic smears, core biopsies, and whole sections using the SP263 assay. Cancer Cytopathol 2019;127(1): 52–61. DOI: https://doi.org/10.1002/cncy.22083
24. Bubendorf L., Lantuejoul S., de Langen A.J., Thunnissen E. Nonsmall cell lung carcinoma: diagnostic difficulties in small biopsies and cytological specimens: number 2 in the series “pathology for the clinician” edited by Peter Dorfmuller and Alberto Cavazza. Eur Respir Rev 2017;26(144):170007. DOI: https://doi.org/10.1183/16000617.0007-2017
25. Sholl L.M., Sun H., Butaney M. et al. ROS1 immunohistochemistry for detection of ROS1- rearranged lung adenocarcinomas. Am J Surg Pathol 2013;37(9):1441–49. DOI: https://doi.org/10.1097/PAS.0b013e3182960fa7
26. Davies K.D., Le A.T., Theodoro M.F. et al. Identifying and targeting ROS1 gene fusions in nonsmall cell lung cancer. Clin Cancer Res 2012;18(17):4570–79. DOI: https://doi.org/10.1158/1078-0432.CCR-12-0550
27. Kwak E.L., Bang Y.J., Camidge D.R. et al. Anaplastic lymphoma kinase inhibition in non-smallcell lung cancer. N Engl J Med 2010;363(18):1693–703. DOI: https://doi.org/10.1056/NEJMoa1006448
28. Lindeman N.I., Cagle P.T., Aisner D.L. et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Thorac Oncol 2018;13(3):323–58. DOI: https://doi.org/10.5858/arpa.2017-0388-CP
29. Shan L., Lian F., Guo L. et al. Detection of ROS1 gene rearrangement in lung adenocarcinoma: comparison of IHC, FISH and real-time RT-PCR. PLoS One 2015;10(3):e0120422. DOI: https://doi.org/10.1371/journal.pone.0120422
30. Yoshida A., Tsuta K., Wakai S. et al. Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Mod Pathol 2014;27(5):711–20. DOI: https://doi.org/10.1038/modpathol.2013.192
31. Vlajnic T., Savic S., Barascud A. et al. Detection of ROS1-positive non-small cell lung cancer on cytological specimens using immunocytochemistry. Cancer Cytopathol 2018;126(6):421–29. DOI: https://doi.org/10.1002/cncy.21983
32. Boyle T.A., Masago K., Ellison K.E. et al. ROS1 immunohistochemistry among major genotypes of non-small-cell lung cancer. Clin Lung Cancer 2015;16(2):106–11. DOI: https://doi.org/10.1016/j.cllc.2014.10.003
33. Bubendorf L., Buttner R., Al-Dayel F. et al. Testing for ROS1 in non-small cell lung cancer: a review with recommendations. Virchows Arch 2016;469(5):489–503. DOI: https://doi.org/10.1007/s00428-016-2000-3
34. Liu L., Zhan P., Zhou X. et al. Detection of EML4-ALK in lung adenocarcinoma using pleural effusion with FISH, IHC, and RT-PCR methods. PLoS One 2015;10(3):e0117032. DOI: https://doi.org/10.1371/journal.pone.0117032
35. Zhou J., Yao H., Zhao J. et al. Cell block samples from malignant pleural effusion might be valid alternative samples for anaplastic lymphoma kinase detection in patients with advanced non-small cell lung cancer. Histopathology 2015;66(7):949–54. DOI: https://doi.org/10.1111/his.12560
36. Wang Z., Wu X., Han H. et al. ALK gene expression status in pleural effusion predicts tumor responsiveness to crizotinib in Chinese patients with lung adenocarcinoma. Chin J Cancer Res 2016;28(6):606–16. DOI: https://doi.org/10.21147/j.issn.1000-9604.2016.06.07
37. Wang W., Tang Y., Li J., et al. Detection of ALK rearrangements in malignant pleural effusion cell blocks from patients with advanced non-small cell lung cancer: a comparison of Ventana immunohistochemistry and fluorescence in situ hybridization. Cancer Cytopathol 2015;123(2):117–22. DOI: https://doi.org/10.1002/cncy.21510
38. Drilon A., Laetsch T.W., Kummar S. et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 2018;378(8):731–39. DOI: https://doi.org/10.1056/NEJMoa1714448
39. Hechtman J.F., Benayed R., Hyman D.M. et al. Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol 2017;41(11):1547–51. DOI: https://doi.org/10.1097/PAS.0000000000000911
40. Bourhis A., Redoulez G., Quintin-Roue I. et al. Screening for NTRK- rearranged tumors using immunohistochemistry: comparison of 2 different pan-TRK clones in melanoma samples. Appl Immunohistochem Mol Morphol 2020;28(3):194–96. DOI: https://doi.org/10.1097/PAI.0000000000000708
41. Gatalica Z., Xiu J., Swensen J., Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol 2019;32(1):147–53. DOI: https://doi.org/10.1038/s41379-018-0118-3
42. Zhao P., Li L., Jiang X., Li Q. Mismatch repair deficiency/ microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol 2019;12(1):54. DOI: https://doi.org/10.1186/s13045-019-0738-1
43. Chang L., Chang M., Chang H.M., Chang F. Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl Immunohistochem Mol Morphol 2018;26(2):e15–21. DOI: https://doi.org/10.1097/PAI.0000000000000575
44. Longacre T.A., Broaddus R., Chuang L.T. et al. for the C.o.A.P. members of the Cancer Biomarker Reporting Committee. Template for reporting results of biomarker testing of specimens from patients with carcinoma of the endometrium. Arch Pathol Lab Med 2017;141(11):1508–12. DOI: https://doi.org/10.5858/arpa.2016-0450-CP
45. Hu G., Tu W., Yang L. et al. ARID1A deficiency and immune checkpoint blockade therapy: from mechanisms to clinical application. Cancer Lett 2020;473:148–55. DOI: https://doi.org/10.1016/j.canlet.2020.01.001
46. Shen J., Ju Z., Zhao W. et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med 2018;24:556–62.
47. Sasaki M., Chiwaki F., Kuroda T. et al. Efficacy of glutathione inhibitors for the treatment of ARID1A-deficient diffuse-type gastric cancers. Biochem Biophys Res Commun 2020;522(2): 342–47. DOI: https://doi.org/10.1016/j.bbrc.2019.11.078
48. Khalique S., Naidoo K., Attygalle A.D. et al. Optimised ARID1A immunohistochemistry is an accurate predictor of ARID1A mutational status in gynaecological cancers. J Pathol Clin Res 2018;4(3):154–66. DOI: https://doi.org/10.1002/cjp2.103
49. Meric-Bernstam F., Johnson A.M., Dumbrava E.E.I. et al. Advances in HER2-targeted therapy: novel agents and opportunities beyond breast and gastric cancer. Clin Cancer Res 2019;25(7):2033–41. DOI: https://doi.org/10.1158/1078-0432.CCR-18-2275
50. Oh D.Y., Bang Y.J. HER2-targeted therapies – a role beyond breast cancer. Nat Rev Clin Oncol 2020;17(1):33–48. DOI: https://doi.org/10.1038/s41571-019-0268-3
51. Bahreini F., Soltanian A.R., Mehdipour P. A meta-analysis on concordance between immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) to detect HER2 gene overexpression in breast cancer. Breast Cancer 2015;22(6):615–25. DOI: https://doi.org/10.1007/s12282-014-0528-0
52. Wolff A.C., Hammond M.E.H., Allison K.H. et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. J Clin Oncol 2018;36(20):2105–22. DOI: https://doi.org/10.1200/JCO.2018.77.8738
53. Shabaik A., Lin G., Peterson M. et al. Reliability of Her2/neu, estrogen receptor, and progesterone receptor testing by immunohistochemistry on cell block of FNA and serous effusions from patients with primary and metastatic breast carcinoma. Diagn Cytopathol 2011;39(5):328–32. DOI: https://doi.org/10.1002/dc.21389
54. Edelweiss M., Sebastiao A.P.M., Oen H. et al. HER2 assessment by bright-field dual in situ hybridization in cell blocks of recurrent and metastatic breast carcinoma. Cancer Cytopathol 2019;127(11):684–90. DOI: https://doi.org/10.1002/cncy.22184
55. Pareja F., Murray M.P., Jean R.D. et al. Cytologic assessment of estrogen receptor, progesterone receptor, and HER2 status in metastatic breast carcinoma. J Am Soc Cytopathol 2017;6(1):33–40. DOI: https://doi.org/10.1016/j.jasc.2016.10.001
56. Савостикова М.В., Коротких И.Ю., Лактионов К.П. Иммуноцитохимическое определение важнейших факторов прогноза у больных раком молочной железы. Онкология. Журнал им. П.А. Герцена 2014;3(1):33–36. [Savostikova MV, Korotkikh IYu, Laktionov KP. Immunocytochemical determination of the most important prognostic factors in patients with breast cancer. P.A. Herzen Journal of Oncology 2014;3(1):33–36. (In Russ.)].
57. Tapia C., Savic S., Wagner U. et al. HER2 gene status in primary breast cancers and matched distant metastases. Breast Cancer Res 2007;9(3):R31. DOI: https://doi.org/10.1186/bcr1676
58. Pinto D., Schmitt F.C. Immunohistochemistry Applied to Breast Cytological Material. Pathobiology. 2022;89(5):343–358. DOI: https://doi.org/10.1159/000522542
59. Kirbis S.I., Krasovec U.M., Pogacnik A., Strojan F.M. Optimization and validation of immunocytochemical detection of oestrogen receptors on cytospins prepared from fine needle aspiration (FNA) samples of breast cancer. Cytopathology 2015;26(2):88–98. DOI: https://doi.org/10.1111/cyt.12143
60. Pu R.T., Giordano T.J., Michael C.W. Utility of cytology microarray constructed from effusion cell blocks for immunomarker validation. Cancer 2008;114(5):300–6. DOI: https://doi.org/10.1002/cncr.23797
61. Mossler J.A., McCarty K.S. Jr., Johnston W.W. The correlation of cytologic grade and steroid receptor content in effusions of metastatic breast carcinoma. Acta Cytol 1981;25(6):653–58.
62. Srinivasan M., Sedmak D., Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 2002;161(6):1961–71. DOI: https://doi.org/10.1016/S0002-9440(10)64472-0
63. Vlajnic T., Somaini G., Savic S. et al. Targeted multiprobe fluorescence in situ hybridization analysis for elucidation of inconclusive pancreatobiliary cytology. Cancer Cytopathol 2014;122(8):627–34. DOI: https://doi.org/10.1002/cncy.21429
64. Husain A.N., Colby T.V., Ordonez N.G. et al. Guidelines for pathologic diagnosis of malignant mesothelioma 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med 2018;142(1):89–108. DOI: https://doi.org/10.5858/arpa.2017-0124-RA
65. Savic S., Franco N., Grilli B. et al. Fluorescence in situ hybridization in the definitive diagnosis of malignant mesothelioma in effusion cytology. Chest 2010;138(1):137–44. DOI: https://doi.org/10.1378/chest.09-1951
66. Cigognetti M., Lonardi S., Fisogni S. et al. BAP1 (BRCA1- associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Mod Pathol 2015;28(8):1043–57. DOI: https://doi.org/10.1038/modpathol.2015.65
67. Siddiqui M.T., Schmitt F., Churg A. Proceedings of the American Society of Cytopathology companion session at the 2019 United States and Canadian Academy of Pathology Annual meeting, part 2: effusion cytology with focus on theranostics and diagnosis of malignant mesothelioma. J Am Soc Cytopathol 2019;8(6):352–61. DOI: https://doi.org/10.1016/j.jasc.2019.07.005
68. Berg K.B., Churg A.M., Cheung S., Dacic S. Usefulness of methylthioadenosine phosphorylase and BRCA-associated protein 1 immunohistochemistry in the diagnosis of malignant mesothelioma in effusion cytology specimens. Cancer Cytopathol 2020;128(2):126–32. DOI: https://doi.org/10.1002/cncy.22221
69. Berg K.B., Dacic S., Miller C. et al. Utility of methylthioadenosine phosphory- lase compared with BAP1 immunohistochemistry, and CDKN2A and NF2 fluorescence in situ hybridization in separating reactive mesothelial proliferations from epithelioid malignant mesotheliomas. Arch Pathol Lab Med 2018;142(12):1549–53. DOI: https://doi.org/10.5858/arpa.2018-0273-OA
70. Ma G.Y., Shi S., Wang P. et al. Clinical significance of 9P21 gene combined with BAP1 and MTAP protein expression in diagnosis and prognosis of mesothelioma serous effusion. Biomed Rep 2022;17(2):66. DOI: https://doi.org/10.3892/br.2022.1549
71. Patel T., Patel P., Mehta S. et al. The value of cytology in diagnosis of serous effusions in malignant lymphomas: an experience of a tertiary care center. Diagn Cytopathol 2019;47(8):776–82. DOI: https://doi.org/10.1002/dc.24197
72. Bode-Lesniewska B. Flow Cytometry and Effusions in Lymphoproliferative Processes and Other Hematologic Neoplasias. Acta Cytologica 2016;60(4):354–364. DOI: https://doi.org/10.1159/000448325
73. Kalemkerian G.P., Narula N., Kennedy E.B. et al. Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology clinical practice guideline update. J Clin Oncol 2018;36(9):911–19. DOI: https://doi.org/10.1200/JCO.2017.76.7293
74. Ellison G., Zhu G., Moulis A. et al. EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumour tissue and cytology samples. J Clin Pathol 2013;66(2):79–89. DOI: https://doi.org/10.1136/jclinpath-2012-201194
75. Moran S., Martinez-Cardus A., Sayols S. et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol 2016;17(10):1386–95. DOI: https://doi.org/10.1016/S1470-2045(16)30297-2
76. Botana-Rial M., De Chiara L., Valverde D. et al. Prognostic value of aberrant hypermethyl- ation in pleural effusion of lung adenocarcinoma. Cancer Bio Ther 2012;13(14):1436–42. DOI: https://doi.org/10.4161/cbt.22004
77. Li X., Liu Y., Shi W. et al. Droplet digital PCR improved the EGFR mutation diagnosis with pleural fluid samples in non-small-cell lung cancer patients. Clin Chim Acta 2017;471:177–84. DOI: https://doi.org/10.1016/j.cca.2017.06.007
78. Tsai T.H., Su K.Y., Wu S.G. et al. RNA is favourable for analysing EGFR mutations in malignant pleural effusion of lung cancer. Eur Respir J 2012;39(3):677–84. DOI: https://doi.org/10.1183/09031936.00043511
79. Cappellesso R., Nicole L., Caroccia B. et al. Young investigator challenge: MicroRNA-21/microRNA-126 profiling as a novel tool for the diagnosis of malignant mesothelioma in pleural effusion cytology. Cancer Cytopathol 2016;124(1):28–37. DOI: https://doi.org/10.1002/cncy.21646
80. Lin J., Wang Y., Zou Y.Q. et al. Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumour Biol 2016; DOI: https://doi.org/10.1007/s13277-016-5410-6
81. Wang Y., Xu Y.M., Zou Y.Q. et al. Identification of differential expressed PE exosomal miRNA in lung adenocarcinoma, tuberculosis, and other benign lesions. Medicine (Baltimore) 2017;96(44):e8361. DOI: https://doi.org/10.1097/MD.0000000000008361
82. Roscilli G., De Vitis C., Ferrara F.F. et al. Human lung adenocarcinoma cell cultures derived from malignant pleural effusions as model system to predict patients chemosensitivity. J Transl Med 2016;14:61. DOI: https://doi.org/10.1186/s12967-016-0816-x
83. Vinayanuwattikun C., Prakhongcheep O., Tungsukruthai S. et al. Feasibility technique of low-passage in vitro drug sensitivity testing of malignant pleural effusion from advanced- stage non-small cell lung cancer for prediction of clinical outcome. Anticancer Res 2019;39(12):6981–88. DOI: https://doi.org/10.21873/anticanres.13920
84. Cailleau R., Mackay B., Young R.K., Reeves W.J. Jr. Tissue culture studies on pleural effusions from breast carcinoma patients. Cancer Res 1974;34(4):801–9.
85. Ruiz C., Kustermann S., Pietilae E. et al. Culture and drug profiling of patient derived malignant pleural effusions for personalized cancer medicine. PLoS One 2016;11(8):e0160807. DOI: https://doi.org/10.1371/journal.pone.0160807
86. Liu X., Krawczyk E., Suprynowicz F.A. et al. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat Protoc 2017;12(2):439–51. DOI: https://doi.org/10.1038/nprot.2016.174
87. Jiang S., Wang J., Yang C. et al. Continuous culture of urine-derived bladder cancer cells for precision medicine. Protein Cell 2019; 10(12):902–7.DOI: https://doi.org/10.1007/s13238-019-0649-5
88. Palechor-Ceron N., Krawczyk E., Dakic A. et al. Conditional reprogramming for patient- derived cancer models and nextgeneration Living biobanks. Cell 2019;8(11). DOI: https://doi.org/10.3390/cells8111327
89. Schutgens F., Clevers H. Human organoids: tools for understanding biology and treating diseases. Ann Rev Pathol 2020;15:211–34. DOI: https://doi.org/10.1146/annurev-pathmechdis-012419-032611
90. Bleijs M., van de Wetering M., Clevers H., Drost J. Xenograft and organoid model systems in cancer research. EMBO J 2019; 38(15):e101654. DOI: https://doi.org/10.15252/embj.2019101654
91. Tuveson D., Clevers H. Cancer modeling meets human organoid technology. Science 2019;364(6444):952–55. DOI: https://doi.org/10.1126/science.aaw6985
92. Önder C.E., Ziegler T.J., Becker R. et al. Advancing Cancer Therapy Predictions with Patient-Derived Organoid Models of Metastatic Breast Cancer. Cancers (Basel) 2023;15(14):3602. DOI: https://doi.org/10.3390/cancers15143602
93. Chandra A., Crothers B., Kurtycz D., Schmitt F. The International System for Serous Fluid Cytopathology. Springer International Publishing, 2020.
Авторы заявляют об отсутствии конфликта интересов.
Работа выполнена без спонсорской поддержки
Федосеева Е. С., Василева О. Л., Воробьев С. Л. и др. Возможности современной цитологической лаборатории в исследовании злокачественных серозных выпотов. Онкопатология 2024;7(1):37–51.
DOI: https://doi.org/10.17650/2618-7019-2024-7-1-37-51
|
2024 №3 (Том 7) Скачать>> |