ISSN (Print): 2618-7019
ISSN (Online): 3034-3534

Анализ экспрессии белков системы репарации неспаренных оснований с помощью иммуногистохимической реакции

Авторы: Кудайбергенова А. Г., Сендерович А. И., Горбань Н. А.

DOI: https://doi.org/10.17650/2618-7019-2024-7-3-17-25

PDF: https://journal.oncopathology.ru/article/op_2024_3_19-27.pdf

Система репарации неспаренных оснований является одним из механизмов, лежащих в основе поддержания целостности генома. Она участвует в митотической и мейотической рекомбинации, апоптозе, перестройке генов иммуноглобулинов, соматической гипермутации и других процессах. Дефицит системы репарации неспаренных оснований (d-MMR) встречается в большинстве видов опухолей, он приводит к возникновению гипермутабельности и микросателлитной нестабильности. Определение дефицита системы репарации неспаренных оснований или микросателлитной нестабильности используется в диагностических, предиктивных и прогностических целях, в частности для скрининга синдрома Линча и выделения пациентов, которые отреагируют на терапию ингибиторами контрольных точек, а также для прогностической оценки клинического течения. В этой статье мы приводим краткий обзор практических методов определения дефицита системы репарации неспаренных оснований, уделяя особое внимание клиническому тестированию с помощью иммуногистохимической реакции, интерпретации результатов.

Кудайбергенова А. Г.1 , Сендерович А. И.2, 3, Горбань Н. А.2

1 ФГБУ «Научно-исследовательский институт онкологии им. Н.Н. Петрова» Минздрава России; Россия, 197758 Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68;

2 ФГБУ «Центральная клиническая больница с поликлиникой» Управления делами Президента Российской Федерации; Россия, 121359 Москва, ул. Маршала Тимошенко, 15;

3Научно-исследовательский институт урологии и интервенционной радиологии имени Н.А. Лопаткина – филиал ФГБУ «Научный медицинский исследовательский центр радиологии» Минздрава России; Россия, 105425 Москва, ул. 3-я Парковая, 51/1

1. Popat S., Hubner R., Houlston R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 2005;23(3):609–18. DOI: 10.1200/JCO.2005.01.086

2. Tejpar S., Saridaki Z., Delorenzi M. et al. Microsatellite instability, prognosis and drug sensitivity of stage II and III colorectal cancer: more complexity to the puzzle. J Natl Cancer Inst 2011;103(11):841–4. DOI: 10.1093/jnci/djr170

3. Hutchins G., Southward K., Handley K. et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol 2011;29(10):1261–70. DOI: 10.1200/JCO.2010.30.1366

4. Benatti P., Gafà R., Barana D. et al. Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 2005;11(23):8332–40. DOI: 10.1158/1078-0432.CCR-05-1030

5. Sargent D.J., Marsoni S., Monges G. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracilbased adjuvant therapy in colon cancer. J Clin Oncol 2010;28(20):3219–26. DOI: 10.1200/JCO.2009.27.1825

6. Ribic C.M., Sargent D.J., Moore M.J. et al. Tumor microsatelliteinstability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003;349(3):247–57. DOI: 10.1056/NEJMoa022289

7. Carethers J.M., Smith E.J., Behling C.A. et al. Use of 5-fluorouracil and survival in patients with microsatelliteunstable colorectal cancer. Gastroenterology 2004;126(2):394–401. DOI: 10.1053/j.gastro.2003.12.023

8. Le D.T., Uram J.N., Wang H. et al. PD-1 Blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372(26):2509–20. DOI: 10.1056/NEJMoa1500596

9. Hampel H., Frankel W.L., Martin E. et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 2005;352(18):1851–60. DOI: 10.1056/NEJMoa043146

10. Lindor N.M., Burgart L.J., Leontovich O. et al. Thibodeau, Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol 2002;20(4):1043–8. DOI: 10.1200/JCO.2002.20.4.1043

11. de Jong A.E., van Puijenbroek M., Hendriks Y. et al. Microsatellite instability, immunohistochemistry, and additional PMS2 staining in suspected hereditary nonpolyposis colorectal cancer. Clin Cancer Res 2004;10(3):972–80. DOI: 10.1158/1078-0432.ccr-0956-3

12. Southey M.C., Jenkins M.A., Mead L. et al. Use of molecular tumor characteristics to prioritize mismatch repair gene testing in early-onset colorectal cancer. J Clin Oncol 2005;23(27):6524–32. DOI: 10.1200/JCO.2005.04.671

13. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group, Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med 2009;11:35–41.

14. Hampel H. NCCN increases the emphasis on genetic/familial high-risk assessment in colorectal cancer. J Natl Compr Canc Netw 2014;12(5 Suppl):829–31. DOI: 10.6004/jnccn.2014.0200

15. Syngal S., Brand R.E., Church J.M. et al. American College of Gastroenterology, ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 2015;110(2):223–62, quiz 263. DOI: 10.1038/ajg.2014.435

16. Luchini C., Bibeau F., Ligtenberg M.J.L. et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic reviewbased approach. Ann Oncol 2019;30(8):1232–43. DOI: 10.1093/annonc/mdz116

17. Lynch H.T., Snyder C.L., Shaw T.G. et al. Milestones of Lynch syndrome: 1895–2015. Nat Rev Cancer 2015;15(3):181–94. DOI: 10.1038/nrc3878

18. Hampel H., Frankel W.L., Martin E. et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol 2008;26(35):5783–8. DOI: 10.1200/JCO.2008.17.5950

19. Gruber S.B. New developments in Lynch syndrome (hereditary nonpolyposis colorectal cancer) and mismatch repair gene testing. Gastroenterology 2006;130(2):577–87. DOI: 10.1053/j.gastro.2006.01.031

20. Li G.-M. Mechanisms and functions of DNA mismatch repair. Cell Res 2008;18(1):85–98. DOI: 10.1038/cr.2007.115

21. Pearlman R., Markow M., Knight D. et al. Twostain immunohistochemical screening for Lynch syndrome in colorectal cancer may fail to detect mismatch repair deficiency. Mod Pathol 2018;31(12):1891–900. DOI: 10.1038/s41379-018-0058-y

22. Boland C.R., Goel A. Microsatellite instability in colorectal cancer. Gastroenterology 2010;138(6):2073–87.e3. DOI: 10.1053/j.gastro.2009.12.064

23. Rahner N., Friedrichs N., Steinke V. et al. Coexisting somatic promoter hypermethylation and pathogenic MLH1 germline mutation in Lynch syndrome. J Pathol 2008;14(1):10–6. DOI: 10.1002/path.2263

24. Niessen R.C., Hofstra R.M.W., Westers H. et al. Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome. Genes Chromosomes Cancer 2009;48(8):737–44. DOI: 10.1002/gcc.20678

25. Weisenberger D.J., Siegmund K.D., Campan M. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006;38(7):787–93. DOI: 10.1038/ng1834

26. Parsons M.T., Buchanan D.D., Thompson B. et al. Correlation of tumour BRAF mutations and MLH1 methylation with germline mismatch repair (MMR) gene mutation status: a literature review assessing utility of tumour features for MMR variant classification. J Med Genet 2012;49(3):151–7. DOI: 10.1136/jmedgenet-2011-100714

27. Adar T., Rodgers L.H., Shannon K.M. et al. A tailored approach to BRAF and MLH1 methylation testing in a universal screening program for Lynch syndrome. Mod Pathol 2017;30(3):440–7. DOI: 10.1038/modpathol.2016.211

28. Yuan Z.-X., Wang X.-Y., Qin Q.-Y. et al. The prognostic role of BRAF mutation in metastatic colorectal cancer receiving anti- EGFR monoclonal antibodies: a meta-analysis. PLoS One 2013;8(6):e65995. DOI: 10.1371/journal.pone.0065995

29. Roth A.D., Tejpar S., Delorenzi M. et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol 2010;28(3):466–74. DOI: 10.1200/JCO.2009.23.3452

30. Bellizzi A.M. Screening for Lynch syndrome: a no-brainer: BRAF V600E mutation-specific immunohistochemistry: caveat emptor. Am J Clin Pathol 2015;143:320–4. DOI: 10.1309/AJCP3ZDD3LTHWCZK

31. Haraldsdottir S., Hampel H., Tomsic J. et al. Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology 2014;147(6):1308–16.e1. DOI: 10.1053/j.gastro.2014.08.041

32. Hemminger J.A., Pearlman R., Haraldsdottir S. et al. Histology of colorectal adenocarcinoma with double somatic mismatch-repair mutations is indistinguishable from those caused by Lynch syndrome. Hum Pathol 2018;78:125–30. DOI: 10.1016/j.humpath.2018.04.017

33. Chen W., Swanson B.J., Frankel W.L. Molecular genetics of microsatellite-unstable colorectal cancer for pathologists. Diagn Pathol 2017;12(1):24. DOI: 10.1186/s13000-017-0613-8

34. Kumarasinghe A.P., de Boer B., Bateman A.C., Kumarasinghe M.P. DNA mismatch repair enzyme immunohistochemistry in colorectal cancer: a comparison of biopsy and resection material. Pathology 2010;42(5):414–20. DOI: 10.3109/00313025.2010.493862

35. Shia J., Stadler Z., Weiser M.R. et al. Immunohistochemical staining for DNA mismatch repair proteins in intestinal tract carcinoma: how reliable are biopsy samples? Am J Surg Pathol 2011;35(3):447–54. DOI: 10.1097/PAS.0b013e31820a091d

36. Vilkin A., Leibovici-Weissman Y., Halpern M. Immunohistochemistry staining for mismatch repair proteins: the endoscopic biopsy material provides useful and coherent results. Hum Pathol 2015;46(11):1705–11. DOI: 10.1016/j.humpath.2015.07.009

37. Bao F., Panarelli N.C., Rennert H. et al. Neoadjuvant therapy induces loss of MSH6 expression in colorectal carcinoma. Am J Surg Pathol 2010;34(12):1798–804. DOI: 10.1097/PAS.0b013e3181f906cc

38. Radu O.M., Nikiforova M.N., Farkas L.M., Krasinskas A.M. Challenging cases encountered in colorectal cancer screening for Lynch syndrome reveal novel findings: nucleolar MSH6 staining and impact of prior chemoradiation therapy. Hum Pathol 2011;42(9):1247–58. DOI: 10.1016/j.humpath.2010.11.016

39. Vilkin A., Halpern M., Morgenstern S. How reliable is immunohistochemical staining for DNA mismatch repair proteins performed after neoadjuvant chemoradiation? Hum Pathol 2014;45(10):2029–36. DOI: 10.1016/j.humpath.2014.07.005

40. Kuan S.-F., Ren B., Brand R. et al. Neoadjuvant therapy in microsatellite-stable colorectal carcinoma induces concomitant loss of MSH6 and Ki-67 expression. Hum Pathol 2017;63:33–9. DOI: 10.1016/j.humpath.2017.02.003

41. Haraldsdottir S., Roth R., Pearlman R. et al. Mismatch repair deficiency concordance between primary colorectal cancer and corresponding metastasis. Fam Cancer 2016;15(2):253–60. DOI: 10.1007/s10689-015-9856-2

42. Sepulveda A.R., Hamilton S.R., Allegra C.J. et al. Molecular biomarkers for the evaluation of colorectal cancer: Guideline from the American Society for clinical pathology, College of american pathologists, Association for molecular pathology, and American Society of clinical oncology. J Clin Oncol 2017;35(13):1453–86. DOI: 10.1200/JCO.2016.71.9807

43. Roth R.M., Haraldsdottir S., Hampel H. et al. Discordant mismatch repair protein immunoreactivity in Lynch syndromeassociated neoplasms: A recommendation for screening synchronous/metachronous neoplasms. Am J Clin Pathol 2016;146(1):50–6. DOI: 10.1093/ajcp/aqw067

44. Bellizzi A.M., Frankel W.L. Colorectal cancer due to deficiency in DNA mismatch repair function: a review. Adv Anat Pathol 2009;16(6):405–17. DOI: 10.1097/PAP.0b013e3181bb6bdc

45. Kalady M.F., Kravochuck S.E., Heald B. et al. Defining the adenoma burden in lynch syndrome Dis Colon Rectum 2015;58(4):388–92. DOI: 10.1097/DCR.0000000000000333

46. Walsh M.D., Buchanan D.D., Pearson S.-A. et al. Immunohistochemical testing of conventional adenomas for loss of expression of mismatch repair proteins in Lynch syndrome mutation carriers: a case series from the Australasian site of the colon cancer family registry. Mod Pathol 2012;25(5):722–30. DOI: 10.1038/modpathol.2011.209

47. Yurgelun M.B., Goel A., Hornick J.L. et al. Microsatellite instability and DNA mismatch repair protein deficiency in Lynch syndrome colorectal polyps. Cancer Prev Res 2012;5(4):574–82. DOI: 10.1158/1940-6207.CAPR-11-0519

48. Bartley A.N., Hamilton S.R., Alsabeh R. et al. Members of the cancer biomarker reporting Workgroup, College of american pathologists, template for reporting results of biomarker testing of specimens from patients with carcinoma of the colon and rectum. Arch Pathol Lab Med 2014;138(2):166–70. DOI: 10.5858/arpa.2013-0231-CP

49. Pai R.K., Pai Re.K. A practical approach to the evaluation of gastrointestinal tract carcinomas for Lynch syndrome. Am J Surg Pathol 2016;40(4):e17–34. DOI: 10.1097/PAS.0000000000000620

50. Chang C.L., Marra G., Chauhan D.P. et al. Oxidative stress inactivates the human DNA mismatch repair system. Am J Physiol Cell Physiol 2002;283(1):C148–54. DOI: 10.1152/ajpcell.00422.2001

51. Mihaylova V.T., Bindra R.S., Yuan J. et al. Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol 2003;23(9):3265–73. DOI: 10.1128/MCB.23.9.3265-3273.2003

52. Dhar S.S., Ruiz-Garcia E., Barresi V., Brunetti O. Molecular mechanisms and targeted therapies for colorectal cancer. Frontiers Media SA, 2022.

53. Graham R.P., Kerr S.E., Butz M.L. et al. Heterogenous MSH6 loss is a result of microsatellite instability within MSH6 and occurs in sporadic and hereditary colorectal and endometrial carcinomas. Am J Surg Pathol 2015;39(10):1370–6. DOI: 10.1097/PAS.0000000000000459

54. Shia J., Zhang L., Shike M. et al. Secondary mutation in a coding mononucleotide tract in MSH6 causes loss of immunoexpression of MSH6 in colorectal carcinomas with MLH1/PMS2 deficiency. Mod Pathol 2013;26(1):131–8. DOI: 10.1038/modpathol.2012.138

55. Dudley B., Brand R.E., Thull D. et al. Germline MLH1 mutations are frequently identified in Lynch syndrome patients with colorectal and endometrial carcinoma demonstrating isolated loss of PMS2 immunohistochemical expression. Am J Surg Pathol 2015;39(8):1114–20. DOI: 10.1097/PAS.0000000000000425

56. Rosty C., Clendenning M., Walsh M.D. et al. Germline mutations in PMS2 and MLH1 in individuals with solitary loss of PMS2 expression in colorectal carcinomas from the Colon Cancer Family Registry Cohort. BMJ Open 2016;6(2):e010293. DOI: 10.1136/bmjopen-2015-010293

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Финансирование

Работа выполнена без спонсорской поддержки.

Для цитирования

Кудайбергенова А. Г., Сендерович А. И., Горбань Н. А. Анализ экспрессии белков системы репарации неспаренных оснований с помощью иммуногистохимической реакции. Онкопатология 2024;7(3):17–25. DOI: https://doi.org/10.17650/2618-7019-2024-7-3-17-25


Возврат к списку










2024 №3 (Том 7) Скачать>>